Respuesta :

The electric potential due to a point charge q at the origin is given by
[tex]v= \frac{q}{4 \pi \epsilon _{0} r} = \frac{q}{4 \pi \epsilon _{0} \sqrt{x^{2}+y^{2}+z^{2}} } [/tex]

The x-component of electric field is
[tex]e_{x} = - \frac{\partial v}{\partial x} = -\frac{q}{4 \pi \epsilon {0}}(- \frac{1}{2}) \frac{2x}{(x^{2}+y^{2}+z^{2})^{3/2}} = \frac{qx}{4 \pi \epsilon _{0} (x^{2}+y^{2}+z^{2})^{3/2}} [/tex]

Answer:
[tex]e_{x} = \frac{qx}{4 \pi \epsilon _{0} (x^{2}+y^{2}+z^{2})^{3/2}} [/tex]

Eₓ = [(qx) / [(4πϵ₀r)√(x² + y² + z²)³]

Further explanation

In this problem, we will solve the derivatives of the composite function. The formula used is the chain rule as follows.

[tex]\boxed{ \ If \ f(x) = h(g(x)) \ then \ f'(x) = h'(g(x)) \times g'(x) \ }[/tex]

In words: differentiate the outer function, then multiply it by the derivative of the innermost function.

Given:

[tex]\boxed{ \ V = \frac{q}{4 \pi \epsilon_0 r} \rightarrow V = \frac{q}{4 \pi \epsilon_0 r \sqrt{x^2 + y^2 + z^2}} \ }[/tex]

Question:

Calculate the x-component of electric field by using [tex]\boxed{ \ E_x = - \frac{\delta V}{\delta x} \ }[/tex]

The Process:

This case is a derivative application for electrostatics in physics.

The potential due to a point charge q at the origin may be written as

[tex]\boxed{ \ V = \frac{q}{4 \pi \epsilon_0 r \sqrt{x^2 + y^2 + z^2}} \rightarrow V = \frac{q}{4 \pi \epsilon_0 r}(x^2 + y^2 + z^2)^{-\frac{1}{2}} \ }[/tex]

  • The outside function is [tex] \boxed{ \ h(x) = \frac{q}{4 \pi \epsilon_0 r}(g(x))^{-\frac{1}{2}} \ } [/tex]
  • The inside function is [tex]\boxed{ \ g(x) = x^2 + y^2 + z^2 \ }[/tex]

Let's determine the derivative and run the composite function rule.

  • The outside function: [tex] \boxed{ \ h'(x) = -\frac{1}{2} \frac{q}{4 \pi \epsilon_0 r}(g(x))^{-\frac{3}{2}} \ } [/tex]
  • The inside function: [tex]\boxed{ \ g'(x) = 2x \ }[/tex]

Let us calculate the x-component of electric field by using

[tex]\boxed{ \ E_x = - \frac{\delta V}{\delta x} \ }[/tex]

The composite  function rule tells us that

[tex]\boxed{ \ V(x) = h(g(x)) \rightarrow V'(x) = h'(g(x)) \times g'(x) \ }[/tex]

Therefore, [tex]\boxed{ \ E_x = - V'(x) \rightarrow -[h'(g(x)) \times g'(x)] \ }[/tex]

[tex]\boxed{ \ E_x = -[-\frac{1}{2} \frac{q}{4 \pi \epsilon_0 r}(x^2 + y^2 + z^2)^{-\frac{3}{2}} \times 2x] \ }[/tex]

Thus, the result is [tex]\boxed{\boxed{ \ E_x = \frac{qx}{4 \pi \epsilon_0 r}(x^2 + y^2 + z^2)^{-\frac{3}{2}} \ }}[/tex]

[tex]\boxed{\boxed{ \ E_x = \frac{qx}{4 \pi \epsilon_0 r \sqrt{(x^2 + y^2 + z^2)^3} }} \ }}[/tex]

Learn more

  1. Using the product rule  https://brainly.com/question/1578252  
  2. The characteristics of electromagnetic waves https://brainly.com/question/727976
  3. Determine the density of our sun at the end of its lifetime https://brainly.com/question/5189537

Keywords: calculus, differential, the composite function rule, the potential due to a point charge q, at the origin, physics, application, the chain rule

Ver imagen BladeRunner212