Respuesta :
The question is a bit of a mess, so here's an attempt at parsing out the relevant information.
Given the PDF of a random variable [tex]X[/tex]:
[tex]f_X(x)=\begin{cases}c|x-2|&\text{for }0\le x\le3\\0&\text{otherwise}\end{cases}[/tex]
Find [tex]c[/tex], the CDF, the median of [tex]X[/tex], and the expectation of [tex]X[/tex] (in no particular order).
For [tex]f_X(x)[/tex] to be valid PDF, we require
[tex]\displaystyle\int_{-\infty}^\infty f_X(x)\,\mathrm dx=1[/tex]
Note that
[tex]|x-2|=\begin{cases}x-2&\text{for }x\ge2\\2-x&\text{for }x<2\end{cases}[/tex]
We have
[tex]\displaystyle\int_{-\infty}^\infty f_X(x)\,\mathrm dx=c\int_0^3|x-2|\,\mathrm dx=c\int_0^2(x-2)\,\mathrm dx+c\int_2^3(2-x)\,\mathrm dx[/tex]
[tex]\implies\dfrac{5c}2=1\implies c=\dfrac25[/tex]
The CDF is defined by
[tex]F_X(x)=\mathbb P(X\le x)=\displaystyle\int_{-\infty}^xf_X(t)\,\mathrm dt[/tex]
To find the CDF, we compute the integral above for the four possible cases:
[tex]x<0\implies\displaystyle\int_{-\infty}^xf_X(t)\,\mathrm dt=0[/tex]
[tex]0\le x<2\implies\displaystyle\int_{-\infty}^xf_X(t)\,\mathrm dt=c\int_0^x|t-2|\,\mathrm dt=\frac{4x-x^2}5[/tex]
[tex]2\le x<3\implies\displaystyle\int_{-\infty}^xf_X(t)\,\mathrm dt=\frac45+c\int_2^x|t-2|\,\mathrm dt=\frac45-c\int_2^x(2-t)\,\mathrm dt=\frac{8-4x+x^2}5[/tex]
[tex]x\ge3\implies\displaystyle\int_{-\infty}^xf_X(t)\,\mathrm dt=1[/tex]
So the CDF is
[tex]F_X(x)=\begin{cases}0&\text{for }x<0\\\\\dfrac{4x-x^2}5&\text{for }0\le x<2\\\\\dfrac{8-4x+x^2}5&\text{for }2\le x<3\\\\1&\text{for }x\ge3\end{cases}[/tex]
The median is the value [tex]M[/tex] such that [tex]\mathbb P(X\le M)=\dfrac12[/tex]. From the PDF, we can gather that the median must fall somewhere in [tex]0\le x\le2[/tex]. The CDF then tells us that
[tex]\mathbb P(X\le M)=F_X(M)=\dfrac12=\dfrac{4M-M^2}5\implies M=2-\sqrt{\dfrac32}\approx0.775[/tex]
The expected value of [tex]X[/tex] is given by
[tex]\mathbb E[X]=\displaystyle\int_{-\infty}^\infty x\,f_X(x)\,\mathrm dx[/tex]
We have
[tex]\mathbb E[X]=\displaystyle\frac25\int_0^2x(x-2)\,\mathrm dx+\frac25\int_2^3x(2-x)\,\mathrm dx=\frac{16}{15}[/tex]
Given the PDF of a random variable [tex]X[/tex]:
[tex]f_X(x)=\begin{cases}c|x-2|&\text{for }0\le x\le3\\0&\text{otherwise}\end{cases}[/tex]
Find [tex]c[/tex], the CDF, the median of [tex]X[/tex], and the expectation of [tex]X[/tex] (in no particular order).
For [tex]f_X(x)[/tex] to be valid PDF, we require
[tex]\displaystyle\int_{-\infty}^\infty f_X(x)\,\mathrm dx=1[/tex]
Note that
[tex]|x-2|=\begin{cases}x-2&\text{for }x\ge2\\2-x&\text{for }x<2\end{cases}[/tex]
We have
[tex]\displaystyle\int_{-\infty}^\infty f_X(x)\,\mathrm dx=c\int_0^3|x-2|\,\mathrm dx=c\int_0^2(x-2)\,\mathrm dx+c\int_2^3(2-x)\,\mathrm dx[/tex]
[tex]\implies\dfrac{5c}2=1\implies c=\dfrac25[/tex]
The CDF is defined by
[tex]F_X(x)=\mathbb P(X\le x)=\displaystyle\int_{-\infty}^xf_X(t)\,\mathrm dt[/tex]
To find the CDF, we compute the integral above for the four possible cases:
[tex]x<0\implies\displaystyle\int_{-\infty}^xf_X(t)\,\mathrm dt=0[/tex]
[tex]0\le x<2\implies\displaystyle\int_{-\infty}^xf_X(t)\,\mathrm dt=c\int_0^x|t-2|\,\mathrm dt=\frac{4x-x^2}5[/tex]
[tex]2\le x<3\implies\displaystyle\int_{-\infty}^xf_X(t)\,\mathrm dt=\frac45+c\int_2^x|t-2|\,\mathrm dt=\frac45-c\int_2^x(2-t)\,\mathrm dt=\frac{8-4x+x^2}5[/tex]
[tex]x\ge3\implies\displaystyle\int_{-\infty}^xf_X(t)\,\mathrm dt=1[/tex]
So the CDF is
[tex]F_X(x)=\begin{cases}0&\text{for }x<0\\\\\dfrac{4x-x^2}5&\text{for }0\le x<2\\\\\dfrac{8-4x+x^2}5&\text{for }2\le x<3\\\\1&\text{for }x\ge3\end{cases}[/tex]
The median is the value [tex]M[/tex] such that [tex]\mathbb P(X\le M)=\dfrac12[/tex]. From the PDF, we can gather that the median must fall somewhere in [tex]0\le x\le2[/tex]. The CDF then tells us that
[tex]\mathbb P(X\le M)=F_X(M)=\dfrac12=\dfrac{4M-M^2}5\implies M=2-\sqrt{\dfrac32}\approx0.775[/tex]
The expected value of [tex]X[/tex] is given by
[tex]\mathbb E[X]=\displaystyle\int_{-\infty}^\infty x\,f_X(x)\,\mathrm dx[/tex]
We have
[tex]\mathbb E[X]=\displaystyle\frac25\int_0^2x(x-2)\,\mathrm dx+\frac25\int_2^3x(2-x)\,\mathrm dx=\frac{16}{15}[/tex]