Respuesta :

Answer:

The value of f out of given expression [tex]d=16ef^2[/tex] is [tex]\frac{\pm 1}{4}\sqrt{\frac{d}{e}}[/tex]

Step-by-step explanation:

Given : expression [tex]d=16ef^2[/tex]

We have to solve for f.

Consider the given expression  [tex]d=16ef^2[/tex]

Divide both side by 16e, we get,

[tex]\frac{d}{16e}=f^2[/tex]

Now, taking square root, both sides, we have,

[tex]\sqrt{\frac{d}{16e}}=\sqrt{f^2}[/tex]

Simplify, we get,

[tex]\sqrt{\frac{d}{16e}}=f[/tex]

We know [tex]\sqrt{16}=\pm 4[/tex] , we get,

[tex]\frac{\pm 1}{4}\sqrt{\frac{d}{e}}=f[/tex]

Thus, The value of f out of given expression [tex]d=16ef^2[/tex] is [tex]\frac{\pm 1}{4}\sqrt{\frac{d}{e}}[/tex]

Answer: [tex]f=\pm \frac{\sqrt{de}}{4e}[/tex]

Step-by-step explanation:

Here, the given expression is,

[tex]d=16ef^2[/tex]

or [tex]16ef^2=d[/tex]

[tex]\implies f^2 =\frac{d}{16e}[/tex]

[tex]\implies f=\pm\sqrt{\frac{d}{16e}}[/tex]

[tex]\implies f =\pm \frac{\sqrt{d}}{4\sqrt{e}}[/tex]

[tex]\implies f= \pm \frac{\sqrt{de}}{4e}[/tex]  ( By rationalization )

Which is the required value of f.